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Recursively Defined Functions 

• We can use the following method to define a function 
with the natural numbers as its domain: 

 

• Base case: Specify the value of the function at zero. 

• Recursion:  Give a rule for finding its value at any 
integer from its values at smaller integers. 

 

• Such a definition is called recursive or inductive 
definition.  
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Recursively Defined Functions 

•Example: 
 

•f(0) = 3 

•f(n + 1) = 2f(n) + 3 
 

•f(0) = 3 

•f(1) = 2f(0) + 3 = 23 + 3 = 9 

•f(2) = 2f(1) + 3 = 29 + 3 = 21 

•f(3) = 2f(2) + 3 = 221 + 3 = 45 

•f(4) = 2f(3) + 3 = 245 + 3 = 93 
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Recursively Defined Functions 

•How can we recursively define the factorial function 
f(n) = n! ?  
 

•f(0) = 1 

•f(n + 1) = (n + 1)f(n)  
 

•f(0) = 1 

•f(1) = 1f(0) = 11 = 1 

•f(2) = 2f(1) = 21 = 2 

•f(3) = 3f(2) = 32 = 6 

•f(4) = 4f(3) = 46 = 24 
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Recursively Defined Functions 

•A famous example: The Fibonacci numbers  
 

•f(0) = 0, f(1) = 1 

•f(n) = f(n – 1) + f(n - 2)  
 

•f(0) = 0 

•f(1) = 1 

•f(2) = f(1) + f(0) = 1 + 0 = 1 

•f(3) = f(2) + f(1) = 1 + 1 = 2 

•f(4) = f(3) + f(2) = 2 + 1 = 3 

•f(5) = f(4) + f(3) = 3 + 2 = 5 

•f(6) = f(5) + f(4) = 5 + 3 = 8 
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Recursively Defined Sets 

•If we want to recursively define a set, we need to 
provide two things: 
 

•  an initial set of elements, 

•  rules for the construction of additional  
   elements from elements in the set. 
 

•Example: Let S be recursively defined by: 

•3  S 

•(x + y)  S if (x  S) and (y  S)  
 

•S is the set of positive integers divisible by 3. 
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Recursively Defined Sets 

•Proof: 
 

•Let A be the set of all positive integers divisible by 3. 
 

•To show that A = S, we must show that  
A  S and S  A. 
 

•Part I: To prove that A  S, we must show that every 
positive integer divisible by 3 is in S. 
 

•We will use mathematical induction to show this.  
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Recursively Defined Sets 

•Let P(n) be the statement “3n belongs to S”. 
 

•Basis step: P(1) is true, because 3 is in S. 
 

•Inductive step: To show: 
If P(n) is true, then P(n + 1) is true. 
 

•Assume 3n is in S. Since 3n is in S and 3 is in S, it follows 
from the recursive definition of S that 
3n + 3 = 3(n + 1) is also in S. 
 

•Conclusion of Part I: A  S. 
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Recursively Defined Sets 

•Part II: To show: S  A. 
 

•Basis step: To show:  
All initial elements of S are in A. 3 is in A. True. 
 

•Inductive step: To show: 
If x and y in S are in A, then (x + y) is in A . 
 

•Since x and y are both in A, it follows that 3 | x and 3 | y. 
From Theorem I, Section 2.3, it follows that 3 | (x + y). 
 

•Conclusion of Part II: S  A. 

•Overall conclusion: A = S. 
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Recursively Defined Sets 

•Another example: 
 

•The well-formed formulae of variables, numerals and 
operators from {+, -, *, /, ^} are defined by: 
 

•x is a well-formed formula if x is a numeral or variable. 
 

•(f + g), (f – g), (f * g), (f / g), (f ^ g) are well-formed 
formulae if f and g are. 
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Recursively Defined Sets 

•With this definition, we can construct formulae such as: 

 

•(x – y) 

•((z / 3) – y) 

•((z / 3) – (6 + 5)) 

•((z / (2 * 4)) – (6 + 5)) 

 



Fall 2002 CMSC 203 - Discrete Structures 11 

Recursive Algorithms 

•An algorithm is called recursive if it solves a problem by 
reducing it to an instance of the same problem with 
smaller input. 
 

•Example I: Recursive Euclidean Algorithm 
 

•procedure gcd(a, b: nonnegative integers with a < b) 

•if a = 0 then gcd(a, b) := b 

•else gcd(a, b) := gcd(b mod a, a) 
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Recursive Algorithms 

•Example II: Recursive Fibonacci Algorithm 
 

•procedure fibo(n: nonnegative integer) 

•if n = 0 then fibo(0) := 0 

•else if n = 1 then fibo(1) := 1 

•else fibo(n) := fibo(n – 1) + fibo(n – 2) 
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Recursive Algorithms 

•Recursive Fibonacci Evaluation: 

f(4) 

f(3) 

f(2) 

f(1) f(0) 

f(1) 

f(2) 

f(1) f(0) 
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Recursive Algorithms 

•procedure iterative_fibo(n: nonnegative integer) 
•if n = 0 then y := 0 
•else 
•begin 
• x := 0 
• y := 1 
• for i := 1 to n-1 
• begin 
•  z := x + y 
•  x : = y 
•  y := z 
• end 
•end   {y is the n-th Fibonacci number} 
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Recursive Algorithms 

•For every recursive algorithm, there is an equivalent 
iterative algorithm. 
 
•Recursive algorithms are often shorter, more elegant, 
and easier to understand than their iterative 
counterparts. 
 
•However, iterative algorithms are usually more efficient 
in their use of space and time.  


