
Fall 2002 CMSC 203 - Discrete Structures 1

Recursively Defined Functions

• We can use the following method to define a function
with the natural numbers as its domain:

• Base case: Specify the value of the function at zero.

• Recursion: Give a rule for finding its value at any
integer from its values at smaller integers.

• Such a definition is called recursive or inductive
definition.

Fall 2002 CMSC 203 - Discrete Structures 2

Recursively Defined Functions

•Example:

•f(0) = 3

•f(n + 1) = 2f(n) + 3

•f(0) = 3

•f(1) = 2f(0) + 3 = 23 + 3 = 9

•f(2) = 2f(1) + 3 = 29 + 3 = 21

•f(3) = 2f(2) + 3 = 221 + 3 = 45

•f(4) = 2f(3) + 3 = 245 + 3 = 93

Fall 2002 CMSC 203 - Discrete Structures 3

Recursively Defined Functions

•How can we recursively define the factorial function
f(n) = n! ?

•f(0) = 1

•f(n + 1) = (n + 1)f(n)

•f(0) = 1

•f(1) = 1f(0) = 11 = 1

•f(2) = 2f(1) = 21 = 2

•f(3) = 3f(2) = 32 = 6

•f(4) = 4f(3) = 46 = 24

Fall 2002 CMSC 203 - Discrete Structures 4

Recursively Defined Functions

•A famous example: The Fibonacci numbers

•f(0) = 0, f(1) = 1

•f(n) = f(n – 1) + f(n - 2)

•f(0) = 0

•f(1) = 1

•f(2) = f(1) + f(0) = 1 + 0 = 1

•f(3) = f(2) + f(1) = 1 + 1 = 2

•f(4) = f(3) + f(2) = 2 + 1 = 3

•f(5) = f(4) + f(3) = 3 + 2 = 5

•f(6) = f(5) + f(4) = 5 + 3 = 8

Fall 2002 CMSC 203 - Discrete Structures 5

Recursively Defined Sets

•If we want to recursively define a set, we need to
provide two things:

• an initial set of elements,

• rules for the construction of additional
 elements from elements in the set.

•Example: Let S be recursively defined by:

•3 S

•(x + y) S if (x S) and (y S)

•S is the set of positive integers divisible by 3.

Fall 2002 CMSC 203 - Discrete Structures 6

Recursively Defined Sets

•Proof:

•Let A be the set of all positive integers divisible by 3.

•To show that A = S, we must show that
A S and S A.

•Part I: To prove that A S, we must show that every
positive integer divisible by 3 is in S.

•We will use mathematical induction to show this.

Fall 2002 CMSC 203 - Discrete Structures 7

Recursively Defined Sets

•Let P(n) be the statement “3n belongs to S”.

•Basis step: P(1) is true, because 3 is in S.

•Inductive step: To show:
If P(n) is true, then P(n + 1) is true.

•Assume 3n is in S. Since 3n is in S and 3 is in S, it follows
from the recursive definition of S that
3n + 3 = 3(n + 1) is also in S.

•Conclusion of Part I: A S.

Fall 2002 CMSC 203 - Discrete Structures 8

Recursively Defined Sets

•Part II: To show: S A.

•Basis step: To show:
All initial elements of S are in A. 3 is in A. True.

•Inductive step: To show:
If x and y in S are in A, then (x + y) is in A .

•Since x and y are both in A, it follows that 3 | x and 3 | y.
From Theorem I, Section 2.3, it follows that 3 | (x + y).

•Conclusion of Part II: S A.

•Overall conclusion: A = S.

Fall 2002 CMSC 203 - Discrete Structures 9

Recursively Defined Sets

•Another example:

•The well-formed formulae of variables, numerals and
operators from {+, -, *, /, ^} are defined by:

•x is a well-formed formula if x is a numeral or variable.

•(f + g), (f – g), (f * g), (f / g), (f ^ g) are well-formed
formulae if f and g are.

Fall 2002 CMSC 203 - Discrete Structures 10

Recursively Defined Sets

•With this definition, we can construct formulae such as:

•(x – y)

•((z / 3) – y)

•((z / 3) – (6 + 5))

•((z / (2 * 4)) – (6 + 5))

Fall 2002 CMSC 203 - Discrete Structures 11

Recursive Algorithms

•An algorithm is called recursive if it solves a problem by
reducing it to an instance of the same problem with
smaller input.

•Example I: Recursive Euclidean Algorithm

•procedure gcd(a, b: nonnegative integers with a < b)

•if a = 0 then gcd(a, b) := b

•else gcd(a, b) := gcd(b mod a, a)

Fall 2002 CMSC 203 - Discrete Structures 12

Recursive Algorithms

•Example II: Recursive Fibonacci Algorithm

•procedure fibo(n: nonnegative integer)

•if n = 0 then fibo(0) := 0

•else if n = 1 then fibo(1) := 1

•else fibo(n) := fibo(n – 1) + fibo(n – 2)

Fall 2002 CMSC 203 - Discrete Structures 13

Recursive Algorithms

•Recursive Fibonacci Evaluation:

f(4)

f(3)

f(2)

f(1) f(0)

f(1)

f(2)

f(1) f(0)

Fall 2002 CMSC 203 - Discrete Structures 14

Recursive Algorithms

•procedure iterative_fibo(n: nonnegative integer)
•if n = 0 then y := 0
•else
•begin
• x := 0
• y := 1
• for i := 1 to n-1
• begin
• z := x + y
• x : = y
• y := z
• end
•end {y is the n-th Fibonacci number}

Fall 2002 CMSC 203 - Discrete Structures 15

Recursive Algorithms

•For every recursive algorithm, there is an equivalent
iterative algorithm.

•Recursive algorithms are often shorter, more elegant,
and easier to understand than their iterative
counterparts.

•However, iterative algorithms are usually more efficient
in their use of space and time.

